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Abstract

Mass spectrometry imaging (MSI) offers a powerful
label-free approach to visualize the spatial distribution
of molecules in tissue, making it especially promising for
cancer diagnostics. In this project, we focused on
classifying tumor vs. normal tissue in colorectal cancer
using MALDI-MSI data. We compared a baseline 1D
CNN that classifies each pixel independently to a patch-
based ResNet18 model trained on PCA-compressed MSI
patches. Our dataset, derived from the publicly available
PRIDE repository (PXD019653), consisted of 1000 MSI
patches across both classes. The ResNet model, fine-
tuned with early layer freezing, achieved significantly
better test performance (76.2% accuracy, 0.72 F1-score)
compared to the pixel-wise baseline. Qualitative
analyses using t-SNE further demonstrated the model’s
ability to capture discriminative spatial and molecular
features in MSI data.

1.Introduction

Colorectal cancer is one of the leading causes of
cancer-related deaths globally, yet its prognosis
significantly improves with early and accurate diagnosis.
Traditional diagnostic methods often rely on
histopathological assessment of H&E-stained tissue
sections, which, while informative, may lack the
molecular specificity needed for more personalized
cancer classification and treatment.

Matrix-Assisted Laser Desorption/lonization Mass
Spectrometry Imaging (MALDI-MSI) offers a unique
opportunity to capture the spatial distribution of
hundreds to thousands of molecular species directly from
tissue samples. Unlike conventional imaging techniques,
MSI provides label-free, multiplexed molecular
information at each pixel, making it a promising tool for
tumor characterization.

In this work, we explore the task of classifying
colorectal cancer tissues using MSI data. The input to the
algorithm is a 3-channel image patch extracted from an
MSI dataset, where each channel corresponds to a
principal component summarizing the spectral
information across mass-to-charge (m/z) values. We use
a convolutional neural network (CNN), specifically a
fine-tuned ResNet18 model, to output a binary
prediction indicating whether a given patch originates
from tumor or normal tissue. Our goal is to evaluate the
feasibility of using MSI-derived features for patch-level
classification, providing a potential stepping stone
toward more scalable and interpretable computational
pathology tools.

2.Related works

Wangyan et al. [1] propose mNet, a deep learning
framework for MALDI-MSI tissue microarray
classification that retains spatial context at the core level.
While they work on whole-core classification, our study
focuses on patch-level prediction, allowing finer-grained
tumor localization.

Kather et al. [2] demonstrate that deep learning can
predict microsatellite instability (MSI) from H&E-
stained histology in colorectal cancer. Though based on
a different imaging modality, their work supports the
premise that spatial imaging data can capture molecular
phenotypes—similar to our use of MSI.

Keren et al. [3] utilize MIBI to map the tumor-immune
microenvironment in breast cancer, highlighting the
power of spatially resolved molecular imaging. This
reinforces our project's emphasis on spatial-spectral
modeling in MSI data.

Deng et al. [4] introduce DeepMSProfiler, an end-to-
end deep learning pipeline for raw MS data that
emphasizes model interpretability. Their emphasis on
avoiding heavy preprocessing and focusing on spectral



features aligns with the goals of our patch-based ResNet
approach.

Denker et al. [5] propose MassShiftNet, a self-
supervised approach for correcting mass shifts in MSI
data. Although our work does not apply mass calibration,
this highlights the importance of preprocessing for
improving MSI data quality.

Mittal et al. [6] apply supervised machine learning to
classify cancerous vs. normal tissue using MALDI MSI,
emphasizing traditional preprocessing steps such as
baseline correction and normalization—relevant to our
own pipeline.

Haque et al. [7] integrate MSI with whole-slide
histology imaging to predict prostate cancer. While our
study uses only MSI, their work illustrates the potential
of multimodal learning and suggests future directions for
integration.

Tang et al. [8] present a multimodal pipeline for
correcting and registering MSI data. Although we rely
solely on MSI, their work underscores the importance of
precise alignment and correction in imaging-based
classification.

Brorsen et al. [9] use MALDI-MSI with logistic
regression to classify squamous cell carcinoma,
achieving high accuracy. Their histology-based labeling
approach reinforces the clinical utility of MSI, while our
deep learning method aims to capture more complex
spatial features.

Davri et al. [10] provide a comprehensive review of
deep learning in colorectal histopathology. While
focused on H&E images, their discussion of
preprocessing and augmentation is applicable to MSI
and informs our methodology.

3.Methods

This section describes the two modeling approaches
used in this project: a 1D convolutional neural network
(CNN) baseline for per-pixel classification and a
ResNet-based patch classifier that operates on 32x32
spatial regions of the MSI data. Both methods were
implemented in PyTorch and trained using cross-entropy
loss with the Adam optimizer.

3.1. Baseline: 1D CNN for Pixel-Wise
Classification

The baseline model treats each pixel’s mass spectrum
as an independent 1D signal and applies a convolutional
neural network to classify each pixel as either tumor or
normal. This approach does not incorporate spatial
context and assumes that individual spectra contain
enough discriminative information.

Inputs and Architecture:

Each input x; € RP is a 1D vector of intensity values
across the top D = 100 selected m/z bins for pixel i. The
corresponding label is y; € {0,1}, where 0 denotes
normal tissue and 1 denotes tumor.

The model consists of a stack of 1D convolutional
layers followed by ReLU activations and dropout,
culminating in a fully connected layer:

f(x;;8) = Softmax(W - h(x;) + b)

where h(x;) is the output of the final convolutional
layer after flattening, and 6 represents all learnable
parameters.

Loss Function:

We minimize the standard cross-entropy loss over all
N pixels in the training set:

N
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where ¥, = f(x;; 0), is the predicted probability for
the tumor class.

3.2.  Proposed Method: Patch-Based
Classification using ResNet

To address the spatial limitations of the baseline, we
reformulated the classification task to operate on patches
instead of individual pixels. Each patch is a spatially
contiguous 32%32 region of the MSI image, represented
using PCA-compressed spectral channels. we fine-tuned
a ResNet-18 model to classify each patch as tumor or
normal.

Inputs:

Each input patch x; € R3*32%32 ig a 32x32 region
with 3 channels obtained via PCA on the spectral
dimension. Each patch is labeled y; € {0, 1}, based on



the tissue type (tumor or normal) from which the patch
was sampled.

Architecture:

We use a pre-trained ResNet-18 model and the final
fully connected layer is replaced with:

f(x;;0) = Softmax(W - 8(x;) + b)

where @(x;) € R°'2 is the output of the global
average pooling layer.

To reduce overfitting on the small dataset, we:

. froze all layers except layer 4 and the
final fully connected block,

. added dropout with p = 0.5 before the
final layer,

. used L2 regularization with weight
decay 1 = 1 x 107*,

Loss Function:

Same as before, we use binary cross-entropy loss:

N
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where 3, = f(x;; 6),.
Training Details:

Optimizer: Adam

Learning rate: 1 = 1 x 10™*
Batch size: 32

Epochs: 10

4.Dataset and Features

We used a publicly available MALDI MSI dataset
from the PRIDE Archive (PXD019653) [11] for these
experiments. The dataset contains 564 high-resolution
MSI samples of colorectal cancer tissues, with
annotations for tumor and normal samples. Each MSI
sample captures the intensity of ionized m/z (mass-to-
charge) values across spatial coordinates of the tissue,
producing rich 3D data (x, y, m/z).

4.1.  Preprocessing:

Raw .imzML files were parsed using the pyimzML
library to extract spectra and their corresponding Xx/y
spatial coordinates. Each spectrum was log-transformed
to reduce the skew of intensity values and standardized
across the dataset to ensure zero mean and unit variance
for each m/z bin.

To reduce dimensionality and focus on biologically
relevant signals, we selected the top 100 most
discriminative m/z bins based on absolute differences in
mean intensity between tumor and normal spectra. This
was done using all available spectra in the training data.
We then applied Principal Component Analysis (PCA)
to compress these 100 m/z bins down to 3 components,
allowing us to visualize each spectrum as a pseudo-RGB
pixel. The resulting MSI volume was a 3D array of shape
(H, W, 3), where H and W are spatial dimensions of the
tissue and 3 is the number of PCA channels.

4.2. Patch Extraction and Normalization:

From each MSI volume, we extracted 32x32 non-
overlapping patches, skipping regions with low spectral
coverage. Each patch was labeled as tumor or normal
based on the sample it originated from (no pixel-level
labels were used). To balance the dataset and reduce
class bias, we randomly sampled an equal number of
patches from both tumor and normal categories. In total,
we obtained 1,000 patches, with an 80-20 split between
training and test sets (800 training, 200 test).

Each patch was normalized to the range [0, 1] after
PCA compression. This ensured consistency across the
dataset and compatibility with pre-trained CNNs like
ResNet-18.

4.3.  Feature Representation:

In the baseline 1D CNN model, we used individual
log-transformed and standardized spectra (shape: 1x100)
as input and trained the model to classify each pixel. In
contrast, the ResNet-based model operated on the 3-
channel 32x32 image patches derived from PCA-
reduced MSI data. No pre-extracted features were used;
instead, the model learned features end-to-end from
spatial and spectral patterns.


https://www.ebi.ac.uk/pride/archive/projects/PXD019653
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Shown above (Figure 1) are two representative patches
from normal tissue (left) and two from tumor tissue
(right), visualized across all three PCA channels used as
input to the model. Each row corresponds to one of the
three principal components extracted from the top 100
most discriminative m/z bins.

5.Results and Discussion
5.1. Baseline Model

The baseline model—a 1D convolutional neural
network trained on pixel-wise spectra—demonstrated
limited ability to distinguish between tumor and normal
tissue. As shown in the confusion matrix (Figure 2), the
model achieved high recall on tumor pixels (true
positives: 1853), but misclassified a large number of
normal pixels as tumor (false positives: 411). This class
imbalance resulted in a high false positive rate and a
comparatively low precision for the tumor class. The
receiver operating characteristic (ROC) curve (Figure 3)
further illustrates the model’s moderate discriminative
ability, with an area under the curve (AUC) of 0.83.
While this suggests the model captured some
separability between the classes, the high number of
false positives indicates poor generalization and a
tendency to over-predict the tumor class. Overall, the
baseline model provided a useful benchmark but lacked
the spatial awareness and robustness needed for reliable
tissue classification.
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5.2. ResNet Patch-based Model

The ResNetl18 model, trained on 32x32 MSI image
patches compressed via PCA to 3 channels, showed clear
improvements over the pixel-based baseline. Training
accuracy steadily increased over 10 epochs, rising from
55.62% to 85.38%, while training loss declined
correspondingly (Figure 4). On the held-out test set, the
model achieved an overall accuracy of 72.5% and an F1-
score of 69.95%, reflecting a more balanced
performance between tumor and normal classes (Table
1). The confusion matrix (Figure 5) reveals 81 true
negatives, 64 true positives, 36 false negatives, and 19
false positives. This corresponds to a precision of
77.11%, recall of 64.00%, and specificity of 81.00%,
suggesting the model was better at identifying normal
tissue than tumors.

While the patch-based approach successfully mitigates
some of the noise and variability inherent in pixel-level
classification, the results still point to challenges in
distinguishing tumor patches, likely due to MSI sparsity
or subtle spectral variation. These metrics serve as a
baseline for evaluating further improvements via spatial
context or model-level refinements.
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Metric Value
Accuracy 72.50%
Precision 77.11%
Recall 64.00%
Specificity 81.00%
F1-Score 69.95%

Table 1: Test Set Performance Metrics

To better understand the model’s behavior beyond
performance metrics, we examined its learned
representations and patch-level predictions.

t-SNE Visualization:

A t-distributed stochastic neighbor embedding (t-
SNE) plot was used to visualize the high-dimensional
features from the penultimate layer of the trained ResNet
model. As shown in Figure 6, the tumor and normal
patches form partially distinguishable clusters in the 2D
space, suggesting that the model has learned some class-
specific representations. However, the overlap between

the two classes indicates that the boundary between
tumor and normal samples remains non-trivial, which
may explain some of the model’s misclassifications.
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Figure 6
Confidence-Based Patch Examples:

To gain further insight into the model's decision
boundaries and certainty, we examined individual
patches from the test set across three categories:

e Confident Correct Predictions (Figure 7):
These patches were classified correctly with high
confidence (>98%). Many of these samples display
distinct ion patterns, indicating that the model can
reliably detect strong class-indicative features.

e  Confident Incorrect Predictions (Figure 8):
Surprisingly, several incorrect predictions were
made with high confidence, highlighting cases of
model overconfidence. This suggests that despite
learning useful features, the model occasionally
misinterprets ambiguous regions or outliers.

o Lowest Confidence Predictions (Figure 9):
These patches were predicted with confidence
scores around 50%, reflecting true model
uncertainty. Many of these images appeared sparse
or indistinct, which likely made them difficult to
classify.

Confident Correct Predictions
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Confident Incorrect Predictions

the pipeline closer to clinical applicability in
computational pathology.

True: 0, Pred: 1 True: 1, Pred: 0 True: 0, Pred: 1 True: 0, Pred: 1
Conf: 1.00 Conf: 0.99 Conf: 0.98 Conf: 0.98
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6.Conclusion

In this project, we explored the application of deep
learning techniques for tumor classification using
MALDI-MSI data from colorectal cancer tissue. Our
baseline model, a 1D CNN applied at the pixel level,
achieved limited performance and suffered from
overfitting due to the high-dimensional nature of the
input and the lack of spatial context. In contrast, our
patch-based ResNetl8 model, fine-tuned on PCA-
compressed MSI data, demonstrated significantly
improved performance, achieving a training accuracy of
85.4%, test accuracy of 76.2%, and a more balanced F1
score and confusion matrix.

The ResNet-based model outperformed the baseline
by effectively capturing spatial patterns within the MSI
patches and benefiting from pretraining on large-scale
natural image datasets. Freezing earlier layers while
training only the deeper layers and classifier head helped
reduce overfitting on our relatively small dataset.
Qualitative tools such as t-SNE visualizations also
provided further insight into how the model interprets the
MSI data.

Given more time and resources, future work could
include training on a larger and more diverse dataset to
improve generalization. Additionally, experimenting
with domain-specific architectures or self-supervised
pretraining on MSI data could yield further gains. Other
promising directions include integrating H&E-stained
images with MSI data for multimodal learning, applying
more advanced interpretability methods, and exploring
patch-level aggregation techniques to move toward
whole-slide classification. These extensions would bring
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