
Abstract 
Mass spectrometry imaging (MSI) offers a powerful 

label-free approach to visualize the spatial distribution 
of molecules in tissue, making it especially promising for 
cancer diagnostics. In this project, we focused on 
classifying tumor vs. normal tissue in colorectal cancer 
using MALDI-MSI data. We compared a baseline 1D 
CNN that classifies each pixel independently to a patch-
based ResNet18 model trained on PCA-compressed MSI 
patches. Our dataset, derived from the publicly available 
PRIDE repository (PXD019653), consisted of 1000 MSI 
patches across both classes. The ResNet model, fine-
tuned with early layer freezing, achieved significantly 
better test performance (76.2% accuracy, 0.72 F1-score) 
compared to the pixel-wise baseline. Qualitative 
analyses using t-SNE further demonstrated the model’s 
ability to capture discriminative spatial and molecular 
features in MSI data. 

 

1.Introduction 

Colorectal cancer is one of the leading causes of 
cancer-related deaths globally, yet its prognosis 
significantly improves with early and accurate diagnosis. 
Traditional diagnostic methods often rely on 
histopathological assessment of H&E-stained tissue 
sections, which, while informative, may lack the 
molecular specificity needed for more personalized 
cancer classification and treatment. 

Matrix-Assisted Laser Desorption/Ionization Mass 
Spectrometry Imaging (MALDI-MSI) offers a unique 
opportunity to capture the spatial distribution of 
hundreds to thousands of molecular species directly from 
tissue samples. Unlike conventional imaging techniques, 
MSI provides label-free, multiplexed molecular 
information at each pixel, making it a promising tool for 
tumor characterization. 

In this work, we explore the task of classifying 
colorectal cancer tissues using MSI data. The input to the 
algorithm is a 3-channel image patch extracted from an 
MSI dataset, where each channel corresponds to a 
principal component summarizing the spectral 
information across mass-to-charge (m/z) values. We use 
a convolutional neural network (CNN), specifically a 
fine-tuned ResNet18 model, to output a binary 
prediction indicating whether a given patch originates 
from tumor or normal tissue. Our goal is to evaluate the 
feasibility of using MSI-derived features for patch-level 
classification, providing a potential stepping stone 
toward more scalable and interpretable computational 
pathology tools. 

2.Related works 

Wangyan et al. [1] propose mNet, a deep learning 
framework for MALDI-MSI tissue microarray 
classification that retains spatial context at the core level. 
While they work on whole-core classification, our study 
focuses on patch-level prediction, allowing finer-grained 
tumor localization. 

Kather et al. [2] demonstrate that deep learning can 
predict microsatellite instability (MSI) from H&E-
stained histology in colorectal cancer. Though based on 
a different imaging modality, their work supports the 
premise that spatial imaging data can capture molecular 
phenotypes—similar to our use of MSI. 

Keren et al. [3] utilize MIBI to map the tumor-immune 
microenvironment in breast cancer, highlighting the 
power of spatially resolved molecular imaging. This 
reinforces our project's emphasis on spatial-spectral 
modeling in MSI data. 

Deng et al. [4] introduce DeepMSProfiler, an end-to-
end deep learning pipeline for raw MS data that 
emphasizes model interpretability. Their emphasis on 
avoiding heavy preprocessing and focusing on spectral 



features aligns with the goals of our patch-based ResNet 
approach. 

Denker et al. [5] propose MassShiftNet, a self-
supervised approach for correcting mass shifts in MSI 
data. Although our work does not apply mass calibration, 
this highlights the importance of preprocessing for 
improving MSI data quality. 

Mittal et al. [6] apply supervised machine learning to 
classify cancerous vs. normal tissue using MALDI MSI, 
emphasizing traditional preprocessing steps such as 
baseline correction and normalization—relevant to our 
own pipeline. 

Haque et al. [7] integrate MSI with whole-slide 
histology imaging to predict prostate cancer. While our 
study uses only MSI, their work illustrates the potential 
of multimodal learning and suggests future directions for 
integration. 

Tang et al. [8] present a multimodal pipeline for 
correcting and registering MSI data. Although we rely 
solely on MSI, their work underscores the importance of 
precise alignment and correction in imaging-based 
classification. 

Brorsen et al. [9] use MALDI-MSI with logistic 
regression to classify squamous cell carcinoma, 
achieving high accuracy. Their histology-based labeling 
approach reinforces the clinical utility of MSI, while our 
deep learning method aims to capture more complex 
spatial features. 

Davri et al. [10] provide a comprehensive review of 
deep learning in colorectal histopathology. While 
focused on H&E images, their discussion of 
preprocessing and augmentation is applicable to MSI 
and informs our methodology. 

3.Methods 

This section describes the two modeling approaches 
used in this project: a 1D convolutional neural network 
(CNN) baseline for per-pixel classification and a 
ResNet-based patch classifier that operates on 32×32 
spatial regions of the MSI data. Both methods were 
implemented in PyTorch and trained using cross-entropy 
loss with the Adam optimizer. 

3.1. Baseline: 1D CNN for Pixel-Wise 
Classification 

The baseline model treats each pixel’s mass spectrum 
as an independent 1D signal and applies a convolutional 
neural network to classify each pixel as either tumor or 
normal. This approach does not incorporate spatial 
context and assumes that individual spectra contain 
enough discriminative information. 

Inputs and Architecture: 

Each input 𝑥! ∈ 	ℝ" is a 1D vector of intensity values 
across the top 𝐷 = 100 selected m/z bins for pixel 𝑖. The 
corresponding label is 𝑦! ∈ {0, 1}, where 0 denotes 
normal tissue and 1 denotes tumor. 

The model consists of a stack of 1D convolutional 
layers followed by ReLU activations and dropout, 
culminating in a fully connected layer: 

𝑓(𝑥!; 𝜃) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊 ∙ ℎ(𝑥!) + 𝑏) 

where ℎ(𝑥!) is the output of the final convolutional 
layer after flattening, and 𝜃 represents all learnable 
parameters. 

Loss Function: 

We minimize the standard cross-entropy loss over all 
N pixels in the training set: 

ℒ =	−
1
𝑁@[𝑦! log(𝑦#E) + (1 −	𝑦!) log(1 − 𝑦#E)]
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where 𝑦#E = 𝑓(𝑥!; 𝜃)& is the predicted probability for 
the tumor class. 

3.2. Proposed Method: Patch-Based 
Classification using ResNet 

To address the spatial limitations of the baseline, we 
reformulated the classification task to operate on patches 
instead of individual pixels. Each patch is a spatially 
contiguous 32×32 region of the MSI image, represented 
using PCA-compressed spectral channels. we fine-tuned 
a ResNet-18 model to classify each patch as tumor or 
normal. 

Inputs: 

Each input patch 𝑥! ∈ 	ℝ'×')×') is a 32×32 region 
with 3 channels obtained via PCA on the spectral 
dimension. Each patch is labeled 𝑦! ∈ {0, 1}, based on 



the tissue type (tumor or normal) from which the patch 
was sampled. 

Architecture: 

We use a pre-trained ResNet-18 model and the final 
fully connected layer is replaced with: 

𝑓(𝑥!; 𝜃) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊 ∙ ∅(𝑥!) + 𝑏) 

where ∅(𝑥!) ∈ 	ℝ*&) is the output of the global 
average pooling layer. 

To reduce overfitting on the small dataset, we: 

• froze all layers except layer 4 and the 
final fully connected block, 
• added dropout with 𝑝 = 0.5 before the 

final layer, 
• used L2 regularization with weight 

decay 𝜆 = 1 × 10+,. 

Loss Function: 

Same as before, we use binary cross-entropy loss: 

ℒ =	−
1
𝑁@[𝑦! log(𝑦#E) + (1 −	𝑦!) log(1 − 𝑦#E)]

$

!%&

 

where 𝑦#E = 𝑓(𝑥!; 𝜃)&. 

Training Details: 

• Optimizer: Adam 
• Learning rate: 𝜆 = 1 × 10+, 
• Batch size: 32 
• Epochs: 10 

4.Dataset and Features 

We used a publicly available MALDI MSI dataset 
from the PRIDE Archive (PXD019653) [11] for these 
experiments. The dataset contains 564 high-resolution 
MSI samples of colorectal cancer tissues, with 
annotations for tumor and normal samples. Each MSI 
sample captures the intensity of ionized m/z (mass-to-
charge) values across spatial coordinates of the tissue, 
producing rich 3D data (x, y, m/z). 

4.1. Preprocessing: 

Raw .imzML files were parsed using the pyimzML 
library to extract spectra and their corresponding x/y 
spatial coordinates. Each spectrum was log-transformed 
to reduce the skew of intensity values and standardized 
across the dataset to ensure zero mean and unit variance 
for each m/z bin. 

To reduce dimensionality and focus on biologically 
relevant signals, we selected the top 100 most 
discriminative m/z bins based on absolute differences in 
mean intensity between tumor and normal spectra. This 
was done using all available spectra in the training data. 
We then applied Principal Component Analysis (PCA) 
to compress these 100 m/z bins down to 3 components, 
allowing us to visualize each spectrum as a pseudo-RGB 
pixel. The resulting MSI volume was a 3D array of shape 
(H, W, 3), where H and W are spatial dimensions of the 
tissue and 3 is the number of PCA channels. 

4.2. Patch Extraction and Normalization: 

From each MSI volume, we extracted 32×32 non-
overlapping patches, skipping regions with low spectral 
coverage. Each patch was labeled as tumor or normal 
based on the sample it originated from (no pixel-level 
labels were used). To balance the dataset and reduce 
class bias, we randomly sampled an equal number of 
patches from both tumor and normal categories. In total, 
we obtained 1,000 patches, with an 80-20 split between 
training and test sets (800 training, 200 test). 

Each patch was normalized to the range [0, 1] after 
PCA compression. This ensured consistency across the 
dataset and compatibility with pre-trained CNNs like 
ResNet-18. 

4.3. Feature Representation: 

In the baseline 1D CNN model, we used individual 
log-transformed and standardized spectra (shape: 1×100) 
as input and trained the model to classify each pixel. In 
contrast, the ResNet-based model operated on the 3-
channel 32×32 image patches derived from PCA-
reduced MSI data. No pre-extracted features were used; 
instead, the model learned features end-to-end from 
spatial and spectral patterns. 

https://www.ebi.ac.uk/pride/archive/projects/PXD019653


 

Figure 1 

Shown above (Figure 1) are two representative patches 
from normal tissue (left) and two from tumor tissue 
(right), visualized across all three PCA channels used as 
input to the model. Each row corresponds to one of the 
three principal components extracted from the top 100 
most discriminative m/z bins. 

 

5.Results and Discussion 
5.1. Baseline Model 

The baseline model—a 1D convolutional neural 
network trained on pixel-wise spectra—demonstrated 
limited ability to distinguish between tumor and normal 
tissue. As shown in the confusion matrix (Figure 2), the 
model achieved high recall on tumor pixels (true 
positives: 1853), but misclassified a large number of 
normal pixels as tumor (false positives: 411). This class 
imbalance resulted in a high false positive rate and a 
comparatively low precision for the tumor class. The 
receiver operating characteristic (ROC) curve (Figure 3) 
further illustrates the model’s moderate discriminative 
ability, with an area under the curve (AUC) of 0.83. 
While this suggests the model captured some 
separability between the classes, the high number of 
false positives indicates poor generalization and a 
tendency to over-predict the tumor class. Overall, the 
baseline model provided a useful benchmark but lacked 
the spatial awareness and robustness needed for reliable 
tissue classification. 

 

 
Figure 2 

 

Figure 3 

5.2. ResNet Patch-based Model 

The ResNet18 model, trained on 32×32 MSI image 
patches compressed via PCA to 3 channels, showed clear 
improvements over the pixel-based baseline. Training 
accuracy steadily increased over 10 epochs, rising from 
55.62% to 85.38%, while training loss declined 
correspondingly (Figure 4). On the held-out test set, the 
model achieved an overall accuracy of 72.5% and an F1-
score of 69.95%, reflecting a more balanced 
performance between tumor and normal classes (Table 
1). The confusion matrix (Figure 5) reveals 81 true 
negatives, 64 true positives, 36 false negatives, and 19 
false positives. This corresponds to a precision of 
77.11%, recall of 64.00%, and specificity of 81.00%, 
suggesting the model was better at identifying normal 
tissue than tumors. 

While the patch-based approach successfully mitigates 
some of the noise and variability inherent in pixel-level 
classification, the results still point to challenges in 
distinguishing tumor patches, likely due to MSI sparsity 
or subtle spectral variation. These metrics serve as a 
baseline for evaluating further improvements via spatial 
context or model-level refinements. 
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Figure 5 

 

 

Table 1: Test Set Performance Metrics 

To better understand the model’s behavior beyond 
performance metrics, we examined its learned 
representations and patch-level predictions. 

t-SNE Visualization: 

A t-distributed stochastic neighbor embedding (t-
SNE) plot was used to visualize the high-dimensional 
features from the penultimate layer of the trained ResNet 
model. As shown in Figure 6, the tumor and normal 
patches form partially distinguishable clusters in the 2D 
space, suggesting that the model has learned some class-
specific representations. However, the overlap between 

the two classes indicates that the boundary between 
tumor and normal samples remains non-trivial, which 
may explain some of the model’s misclassifications. 

 

Figure 6 

Confidence-Based Patch Examples: 

To gain further insight into the model's decision 
boundaries and certainty, we examined individual 
patches from the test set across three categories: 

• Confident Correct Predictions (Figure 7): 
These patches were classified correctly with high 
confidence (>98%). Many of these samples display 
distinct ion patterns, indicating that the model can 
reliably detect strong class-indicative features. 

• Confident Incorrect Predictions (Figure 8): 
Surprisingly, several incorrect predictions were 
made with high confidence, highlighting cases of 
model overconfidence. This suggests that despite 
learning useful features, the model occasionally 
misinterprets ambiguous regions or outliers. 

• Lowest Confidence Predictions (Figure 9): 
These patches were predicted with confidence 
scores around 50%, reflecting true model 
uncertainty. Many of these images appeared sparse 
or indistinct, which likely made them difficult to 
classify. 

 

Figure 7 

Metric Value 
Accuracy 72.50% 
Precision 77.11% 
Recall 64.00% 
Specificity 81.00% 
F1-Score 69.95% 



 

Figure 8 

 

Figure 9 

6.Conclusion 

In this project, we explored the application of deep 
learning techniques for tumor classification using 
MALDI-MSI data from colorectal cancer tissue. Our 
baseline model, a 1D CNN applied at the pixel level, 
achieved limited performance and suffered from 
overfitting due to the high-dimensional nature of the 
input and the lack of spatial context. In contrast, our 
patch-based ResNet18 model, fine-tuned on PCA-
compressed MSI data, demonstrated significantly 
improved performance, achieving a training accuracy of 
85.4%, test accuracy of 76.2%, and a more balanced F1 
score and confusion matrix. 

The ResNet-based model outperformed the baseline 
by effectively capturing spatial patterns within the MSI 
patches and benefiting from pretraining on large-scale 
natural image datasets. Freezing earlier layers while 
training only the deeper layers and classifier head helped 
reduce overfitting on our relatively small dataset. 
Qualitative tools such as t-SNE visualizations also 
provided further insight into how the model interprets the 
MSI data. 

Given more time and resources, future work could 
include training on a larger and more diverse dataset to 
improve generalization. Additionally, experimenting 
with domain-specific architectures or self-supervised 
pretraining on MSI data could yield further gains. Other 
promising directions include integrating H&E-stained 
images with MSI data for multimodal learning, applying 
more advanced interpretability methods, and exploring 
patch-level aggregation techniques to move toward 
whole-slide classification. These extensions would bring 

the pipeline closer to clinical applicability in 
computational pathology. 
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